Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Asif.A. Tahir, ${ }^{\text {a }}$ Mazhar Hamid, ${ }^{\text {a }}$ Muhammad Mazhar, ${ }^{\text {a }}$ Matthias Zeller ${ }^{\text {b }}$ and Allen D Hunter ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan, and ${ }^{\text {b }}$ Youngstown State University, STaRBURSTTCyberdiffraction Consortium @ YSU \& Department of Chemistry, 1 University Plaza, Youngstown, OH 44555-3663, USA

Correspondence e-mail:
mazhar42pk@yahoo.com

Key indicators

Single-crystal X-ray study
$T=100 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.020$
$w R$ factor $=0.049$
Data-to-parameter ratio $=20.1$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
Dioxobis(pentane-2,4-dionato)(tetrahydrofuran)uranium(VI)

The U^{VI} atom in the title complex, $\left[\mathrm{UO}_{2}\left(\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{O}_{2}\right)_{2}\left(\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}\right)\right]$, has a pentagonal-bipyramidal geometry. The U^{VI} atom is surrounded by seven O atoms, four of pentane-2,4-dione, one of the tetrahydrofuran ligand and the two uranyl O atoms.

Comment

Compounds of uranyl β-diketonates with neutral donor ligands have been extensively studied due to their importance in the processes of separation of uranium by solvent extraction. Complexes with pentane-2,4-dione have also been reported; examples are (2-aminopentan-4-one)dioxobis-(pentane-2,4-dionato)uranium(VI) (Rodgers et al., 1977), aquadioxobis(pentane-2,4-dionato)uranium(VI) and 2,4,6-trimethylpyridinium dinitratodioxo(pentane-2,4-dionato)uranate(VI) (Alcock \& Flanders, 1987). All of them have a pentagonal-bipyramidal geometry with considerable deformation in the equatorial plane.

(I)

For the title compound, (I), the coordination geometry around the U atom closely resembles that of a standard pentagonal bipyramid. The principal bond lengths and angles are shown in Table 1. The apical U-O distances (mean $1.778 \AA$) are as expected for a uranium-oxygen double bond and are considerably shorter than equatorial $\mathrm{U}-\mathrm{O}_{\text {acac }}$ counterparts (mean $2.351 \AA$). The latter are very close to but slightly shorter than the corresponding distances found for (2-N-methylaminopentan-4-one)dioxobis(pentane-2,4-dionato)uranium(VI) (mean $2.360 \AA$; Haigh et al., 1976). The tetrahydrofuran (THF) molecule is less tightly bound than the chelating pentanedionate ligands and the $\mathrm{U}_{\mathrm{THF}}-\mathrm{O}$ bond length ($2.507 \AA$) is longer than all other $U-O$ bond lengths observed here.

The axial/equatorial $\mathrm{O}-\mathrm{U}-\mathrm{O}$ bond angles in (I) are close to the ideal pentagonal-bipyramidal angle of 90°, lying in the range 88.87 (9)-91.71 (9) ${ }^{\circ}$, whilst the axial/axial $\mathrm{O}-\mathrm{U}-\mathrm{O}$ angle of $178.39(10)^{\circ}$ is very close to the ideal angle of 180°.

The 'bite' angles of the two acac groups, $\mathrm{O} 3-\mathrm{U} 1-\mathrm{O} 4$ and $\mathrm{O} 5-\mathrm{U} 1-\mathrm{O} 6\left[71.60(7)\right.$ and $\left.70.88(7)^{\circ}\right]$ are close to the ideal pentagonal-bipyramidal angle of 72°, and are in good agreement with the average bite angle of 70.8° in $\left[\mathrm{UO}_{2}(\mathrm{acac})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$ (Alcock \& Flanders, 1987).

Experimental

$\left[\mathrm{UO}_{2}(\mathrm{acac})_{2}\right]$ was prepared by the reaction of $\left[\mathrm{UO}_{2}(\mathrm{OAc})_{2}\right] \cdot 3 \mathrm{H}_{2} \mathrm{O}$ $(1.5 \mathrm{~g}, \quad 3.53 \mathrm{mmol})$ with pentane-2,4-dione (acacH) $(0.07 \mathrm{~g}$, 7.07 mmol) in toluene (5 ml). Continuous stirring for 3 h at 343 K followed by removal of all the volatiles in vacuo gave a dry powder. Orange block-shaped crystals suitable for single-crystal X-ray analysis were grown from a concentrated THF solution at room temperature after 1 d .

Crystal data

$\left[\mathrm{UO}_{2}\left(\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{O}_{2}\right)_{2}\left(\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}\right)\right]$	$Z=4$
$M_{r}=540.35$	$D_{x}=2.143 \mathrm{Mg} \mathrm{m}^{-3}$
Monoclinic, $P 2_{1} / c$	Mo $K \alpha$ radiation
$a=13.2988(8) \AA$	$\mu=9.72 \mathrm{~mm}^{-1}$
$b=8.0155(5) \AA$	$T=100(2) \mathrm{K}$
$c=16.0928(9) \AA$	Block, orange
$\beta=102.465(1)^{\circ}$	$0.34 \times 0.22 \times 0.22 \mathrm{~mm}$
$V=1675.00(17) \AA^{3}$	

$V=1675.00(17) \AA^{3}$

Data collection

Bruker AXS SMART APEX CCD diffractometer
ω scans
Absorption correction: multi-scan (SADABS in SAINT-Plus; Bruker, 2003)
$T_{\text {min }}=0.065, T_{\text {max }}=0.118$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.020$
$w R\left(F^{2}\right)=0.049$
$S=1.10$
4090 reflections
203 parameters
H-atom parameters constrained

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0231 P)^{2}\right. \\
& \quad+1.9168 P] \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=1.30 \mathrm{e}^{-3} \\
& \Delta \rho_{\min }=-0.86 \mathrm{e}^{-3}
\end{aligned}
$$

All H atoms were positioned geometrically and were refined with $U_{\text {iso }}(\mathrm{H})=x U_{\text {eq }}$ (carrier atom), where $x=1.5$ for methyl H and 1.2 for all other H atoms. The s.u. values of the cell parameters are taken from the software, recognizing that the values are unreasonably small

Figure 1
View of the title complex, showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level.
(Herbstein, 2000). The highest peak is located $0.79 \AA$ from the uranium atom.

Data collection: SMART (Bruker, 2002); cell refinement: SAINTPlus (Bruker, 2003); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Bruker, 2003); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

The role of the Pakistan Science Foundation Islamabad is gratefully acknowledged for financial support through Project No. PSF/R\&D/C-QU/CHEM.(218), and the diffractometer was funded by NSF grant 0087210, by Ohio Board of Regents grant CAP-491, and by YSU.

References

Alcock, N. W. \& Flanders, D. J. (1987). Acta Cryst. C43, 1480-1483.
Bruker (2002). SMART for WNT/2000. Version 5.630. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2003). SAINT-Plus (Version 6.45) and SHELXTL (Version 6.14). Bruker AXS Inc., Madison, Wisconsin, USA.
Haigh, J. M., Nassimbeni, L. R., Pauptit, R. A., Rodgers, A. L. \& Sheldrick, G. M. (1976). Acta Cryst. B32, 1398-1401.

Herbstein, F. H. (2000). Acta Cryst. B56, 547-557.
Rodgers, A. L., Nassimbeni, L. R., Paupit, R. A., Orpen, G. \& Haigh, J. M. (1977). Acta Cryst. B33, 3110-3113.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

